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Experimental work on mixing in microfluidic devices has been of growing importance
in recent years. Interest in probing reaction kinetics faster than the minute or hour
time scale has intensified research in designing microchannel devices that would
allow the reactants to be mixed on a time scale faster than that of the reaction.
Particular attention has been paid to the design of microchannels in order to enhance
the advection phenomena in these devices. Ultimately, in vitro studies of biological
reactions can now be performed in conditions that reflect their native intracellular
environments. Liau et al. (Anal. Chem., vol. 77, 2005, p. 7618) have demonstrated a
droplet-based microfluidic mixer that induces improved chaotic mixing of crowded
solutions in milliseconds due to protrusions (‘bumps’) on the microchannel walls. Liau
et al. (2005) have shown it to be possible to mix rapidly plugs of highly concentrated
protein solutions such as bovine hemoglobin and bovine serum albumin. The present
work concerns an analysis of the underlying mechanisms of shear stress transfer at
liquid–liquid interfaces and associated enhanced mixing arising from the protrusions
along the channel walls. The role of non-Newtonian rheology and surfactants is also
considered within the mixing framework developed by Aref, Ottino and Wiggins in
several publications. Specifically, we show that proportional thinning of the carrier
fluid lubrication layer at the bumps leads to greater advection velocities within the
plugs, which enhances mixing. When the fluid within the plugs is Newtonian, mixing
will be enhanced by the bumps if they are sufficiently close to one another. Changing
either the rheology of the fluid within the plugs (from Newtonian to non-Newtonian)
or modifying the mechanics of the carrier fluid-plug interface (by populating it with
insoluble surfactants) alters the mixing enhancement.

1. Introduction
Microchannel mixers that generate chaotic advection (Aref 1984, 2002) have been

extensively developed, enabling the mixing of fluids in microscale channels at small
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Figure 1. Fast mixing of reactants (top-down view). (a) A microfluidic system for the rapid
mixing of aqueous solutions (AS). In this micromixer designed by Song et al. (2003) and
Song & Ismagilov (2003), three separate aqueous streams converge, then intersect with an
oil stream as a carrier fluid (CF) and pinch off into droplets (plugs) suspended in the oil
carrier fluid. (b) Schematic of the bumpy serpentine mixer designed by Liau et al. (2005). Two
streams of crowded solutions (CS) containing reactants X and Y separated by a third stream
of crowded solution intersect with two oil streams (CF) to form long droplets suspended in
oil (plugs). The plugs then proceed through several cycles of the bumpy serpentine channel
until the plug contents are fully mixed. Note that the plugs encountered experimentally are
longer than presented schematically on the figure (see figure 3). (Reprinted with permission
from Liau et al. 2005. Copyright 2005, American Chemical Society.)

values of the Reynolds number (Liu et al. 2000; Stroock et al. 2002). In particular,
more recently, Song, Tice & Ismagilov (2003), Song & Ismagilov (2003) and Bringer
et al. (2004) first designed a micromixer for dilute solutions within aqueous droplets
suspended in an oil carrier fluid (see figure 1a). Three aqueous streams converge in a
single microchannel where they pinch off into droplets or ‘plugs’ in suspension in an
oil containing a surfactant. Alternation between two asymmetric counter circulating
flow patterns within the plug, as the plug progresses each half-cycle of the serpentine
channel (Song et al. 2003; Song & Ismagilov 2003; Bringer et al. 2004), induces
chaotic mixing (Ottino 1989; Ottino & Wiggins 2004; Wiggins & Ottino 2004;
Sturman, Ottino & Wiggins 2006). The reaction time coordinate, a measure of the
time course of the reaction, is directly related to the distance the plug moves down the
channel. The reactants remain confined in each plug, which prevents axial dispersion.
Reactions within the plug can thus be submitted to (chemical) kinetic analysis.

The serpentine channel micromixer has been redesigned by Liau et al. (2005) who
introduced bumps along the outer side of the curved channel walls (see figure 1b). With
bumps, mixing within long plugs of finite size of highly concentrated proteins (Ellis
2001; Minton 2001; Hall & Minton 2003) was significantly enhanced. The present
work concerns an analysis of the means by which the bumps in the experiments of
Liau et al. (2005) enhance the mixing within the plugs flowing in the microchannel.
An additional goal is to explore other means by which one might manipulate the
liquid–liquid interfaces in such a system so as to enhance mixing. As we show below,
it is the transfer of shear stress across these interfaces that drives the flow within the
inner fluid, and hence leads to chaotic advection.

We focus here on elucidating mechanisms, and not on thorough modelling of
the flows in every detail. We intend to compare two serpentine mixers of same
curvature (see figure 1b): one serpentine mixer presents a series of bumps along one
wall of the channel, which alternates each half-cycle; the other serpentine mixer is
smooth and presents no alteration on its walls. To expose the mechanisms, we shall
analyse the arrangement of two infinite fluid layers in a two-dimensional channel, the
analysis of which will bring insight to our problem. Consider a microchannel as a
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Figure 2. Geometry of the model problem (top-down view). The half-width of the channel
is represented. The dashed line represents the interface between fluids A and B. The axis x̃ is
oriented along the course of the channel. The plane ỹ = 0 is interpreted as a plane of symmetry.

two-dimensional halved straight channel which presents a bump in the middle of its
course (see figure 2) as a significant unit. The repetition N times of this significant unit
will represent one half-cycle with a series of N bumps of the bumpy serpentine mixer
designed by Liau et al. (2005) (see figure 1b). The channel is filled with two immiscible
fluids A and B. Both fluids are assumed incompressible and Newtonian, of densities
ρ̃A and ρ̃B , of viscosities µ̃A and µ̃B . Dimensional quantities are indicated by a tilde.
The two-fluid flow is pressure-driven. First, note that our analysis is comparative
between smooth and bumpy channels, and that the smooth and the bumpy serpentine
micromixers present the same curvature experimentally. Because our comparison with
the experiments is focused on the differences between smooth and bumpy channels,
we do not explicitly model the effects of channel curvature on the two-layer fluid
flow, which has been addressed elsewhere (Roy, Roberts & Simpson 2002; Jensen,
Chini & King 2004; Jacob & Gaver 2005; Muradoglu & Stone 2007). The curvature
is associated with the reorientation necessary to drive chaotic advection, and because
it is the same in smooth and bumpy channels, we focus on the shearing motions that
we shall later associate with the twist in the ‘linked twist map’ (LTM) framework
of Sturman et al. (2006). Second, note that the droplets experimentally studied span
lengths of four times the distance between adjacent bumps (or about 4 bumps) in
the bumpy serpentine mixer and exhibit aspect ratios of width with respect to length
of 1/4 for the smooth channel to 1/8 for the bumpy channel (see figure 3). In the
meantime, the extension of the influence of the front curvature of the droplet on the
inner Stokes flow measured relative to the frontal interface of the droplet is limited to
less than one half-width of the channel (Behrens et al. 1987; Coyle, Blake & Macosko
1987). We shall show that the mixing enhancement due to the presence of the bumps
is not sensitive to either (i) the film thickness away from a bump or (ii) the pressure
gradient within the long interior of the droplet or the surrounding film. Therefore,
we can neglect the influence of pressure gradients due to curvature changes located
at the front and at the rear of the droplet and study the case of two infinite fluid
layers. One layer (B ), that represents the oil lubrication layer, shall be much thinner
than the other. In the limit of a long droplet, the model problem as described shares
the main features of the physics of a droplet in a serpentine microchannel, with the
advantage that the influence of the interfacial mechanics on the flow may be studied
with clarity.

Physically, in this paper we demonstrate that the thinning of the lubrication layer
B under the bump enhances the shear stress at the interface and that increased shear
stress at the interface leads to greater advection velocities in the interior fluid A.
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Figure 3. Droplets of 50 mg ml−1 bovine serum albumine (BSA) visualized with calcein
fluorescent dye, along the bumpy serpentine channel, with flow rates of 3 µl min−1 for the
oil stream and 0.3 µl min−1 for the BSA streams.

This is the basis for the enhancement of mixing. In addition, when the interior fluid
is Newtonian, we show that mixing will be enhanced by bumps on the walls of
the serpentine channel if the bumps are sufficiently closely spaced to one another.
When this is not true, the ‘slip difference’ (or net shear) between bumpy and smooth
channels relaxes to zero. This is the key insight. Also, we show that the slip difference
between bumpy and smooth mixers can be made non-zero by changing either the
rheology of the interior fluid (from Newtonian to non-Newtonian) or by modifying
the mechanics of the interface (by populating it with insoluble surfactants). In that
way, the interfacial velocity accelerates less than the centreline velocity under the
bump – compared with the Newtonian case – which can result in a positive non-zero
slip difference, that persists indefinitely, instead of relaxing to zero.

The plan of the paper is as follows. First, in § 2 we present the experimental system,
with results (§ 3) that illustrate the enhancement of mixing by the bumps. Our goal in
the analysis that follows is not to develop a computational model of the experiment.
Instead, with the experiment as a guide, we develop the simpler flow to study. This
has the advantage of possessing all of the key elements of the mixing problem but
in a simpler geometry where the exposition of mechanisms is clearer. In § § 4–6 we
formulate the model problem. In § 7, we study how the interfacial transfer of shear
stress influences the advection in the interior fluid. This is put into the context of
recent work on mixing by Wiggins & Ottino (2004) and Sturman et al. (2006). In
§ 8, we explore the way in which the presence of insoluble surfactant on the interface
affects the transfer of shear stress (and therefore the mixing enhancement). Appendix
B describes the influence of shear thinning and shear thickening. Finally, we give our
conclusions.

Taken together, the insight provided by analysis gives valuable guidance in the
design of such mixers.

2. Experimental study
2.1. Fabrication

The micromixer devices were fabricated with polydimethylsiloxane (PDMS) (Sylgard
184, Dow Corning), using a micromolding process (Duffy et al. 1998). To fabricate
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the PDMS component, a microchannel mold was made by patterning a silicon wafer
with photoresist and etching the silicon approximately 20 µm deep in a deep reactive
ion etching system (DRIE) system (surface technology systems (STS) advanced silicon
etch (ASE) system) to leave a positive relief of channels with a 1:1 aspect ratio. The
silicon mold was then placed in a desiccator with a few drops of tridecafluoro-1,1,2,2-
tetrahydrooctyl-1-trichlorosilane (United Chemical Technologies) to aid in the future
removal of PDMS. PDMS was mixed in a 10:1 ratio of monomer and curing agent,
poured over the mold, degassed and cured at 90◦C for 30 min and then removed from
the mold. Inlet and outlet holes were drilled in the PDMS component using a drill
(Model 395, Dremel) and 300–400 µm diameter drill bits. The molded component
was then bonded to a previously prepared PDMS-coated glass slide using a transfer
bonding technique (Satyanarayana, Karnik & Majumdar 2005) to obtain the device.

2.2. Microscopy

Fluidic connections were made by inserting 0.016 in. outer diameter PTFE tubing
(Cole-Parmer) that was connected to 27G needles via 0.012 in. inner diameter PTFE
tubing. Glass syringes (Hamilton) were mounted on a syringe pump (SP200I, World
Precision Instruments) to control flow through the device. The device was mounted on
an inverted epi-fluorescence microscope (TE2000-U, Nikon) for experiments. Images
were acquired with an ORCA-ER camera (Hamamatsu Photonics) controlled by
Wasabi software (Hamamatsu Photonics). Image analysis was performed with ImageJ
and Wasabi.

2.3. Mixing time scale measurements

Bovine haemoglobin (Hb) (Sigma) was dissolved in phosphate-buffered saline
(Invitrogen). Three solutions, each with same Hb concentration (10, 35 or
100 mg ml−1), were prepared for each set of Hb mixing time scale measurement
experiments: Hb with 1mM calcium-ion indicator Fluo-4FF (Invitrogen) with 1 mM
ethylenediamine tetracetic acid (EDTA) (Sigma), Hb with 1 mM EDTA and Hb with
10 mM CaCl2. Each of these Hb solutions was loaded into one of three 100 µl fixed-
needle glass syringes (Hamilton). Bovine serum albumin (BSA) mixing time scale
measurements were performed with solutions of 10 and 50 mg ml−1 BSA (Equitech-
Bio) in phosphate-buffered saline (Invitrogen). Two of the three 100 µl syringes were
loaded with BSA and the third syringe was loaded with BSA and 5 mM calcein
dye (Invitrogen). In these experiments, a 1:2 v/v mixture of EGC-1702 (3M) and
Fluorinert (FC-70, Sigma) with a 1:10 v/v addition of perfluorinated surfactant
(C6F11C2H4OH, Acros) served as the oil carrier stream and was loaded into two 1 ml
removable-needle glass syringes (Hamilton). The three 100 µl syringes were driven by
syringe pump at flow rates ranging from 0.1 to 0.8 µl min−1 and the 1 ml syringes
were driven by an identical syringe pump at flow rates ranging from 0.5 to 4 µl min−1.
Ratios between the 1 ml syringes and the 100 µl syringes flow rates were kept at
10 to allow the formation of sufficiently long plugs. A third set of experiments was
performed with solutions of 35 mg ml−1 Hb where the oil carrier stream containing
a 1:2 v/v mixture of EGC-1702 (3M) and Fluorinert (FC-70, Sigma) had this time
different additions (1:10, 1:5 or 1:2 v/v) of perfluorinated surfactant (C6F11C2H4OH,
Acros).

2.4. Viscometry and tensiometry

Viscosities of Hb and BSA solutions were derived from prior studies (Andreas,
Hauser & Tucker 1938; Monkos 1994, 1996). The Fluorinert, EGC-1702, surfactant
mixture (oil carrier fluid) was measured by Liau et al. (2005) using a falling ball
viscometer (Gilmont). Interfacial tensions of oil carrier fluid and the Hb and BSA
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Hb solution concentration Viscosity (mPa s)
10 mgml−1 1.05
35 mgml−1 1.17
100 mgml−1 1.63

BSA solution concentration
10 mgml−1 1.00
50 mgml−1 1.00

Oil stream
1:10 surfactant 4.88 ± 0.06

Experimental combinations Interfacial tension (mN m−1)
10 mgml−1 Hb – 1:10 surfactant 3.61 ± 0.97
35 mgml−1 Hb – 1:10 surfactant 3.47 ± 0.47
100 mgml−1 Hb – 1:10 surfactant 2.90 ± 0.23
10 mgml−1 BSA – 1:10 surfactant 5.99 ± 0.59
50 mgml−1 BSA – 1:10 surfactant 5.94 ± 0.44

Table 1. Calculated values of the viscosity and interfacial tension measurements for the
different samples used in the experiments.

Hb concentration 10 mgml−1 35mgml−1 100 mgml−1

Λ 0.22 0.24 0.33
Number of half-cycles for
full mixing in smooth channel (experimental) 6 7 12
Number of half-cycles M for
full mixing in bumpy channel (experimental) 3 4 7

Table 2. Experimental results obtained for samples of different Hb concentrations with flow
rates of 2 µl min−1 for the oil stream and 0.2 µl min−1 for Hb streams. Λ= µ̃A/µ̃B is a
dimensionless viscosity ratio between the inner fluid A within the plug and the oil outer fluid
B and is later introduced in § 5.

solutions were measured by an inverted pendant drop technique. Pendant drop
images were captured using a drop shape analysis system (Kruss, DSA-10). Interfacial
tensions were extracted using the method of a selected plane and tables listed by
Andreas et al. (1938) and Stauffer (1965). Table 1 collects the results.

3. Results
Mixing of Hb samples of different concentrations in plugs carried by an oil stream

containing a 1:10 v/v addition of perfluorinated surfactant (C6F11C2H4OH, Acros) in
both smooth and bumpy mixers has been analysed for flow rates of 0.2 µl min−1 and
2 µl min−1 for respectively the Hb streams and the oil stream (see table 2). We plotted
on figure 4 experimental data concerning the mixing of 35 mg ml−1 Hb solutions.

Mixing becomes more difficult even in bumpy channels for higher Hb concentrations
(see 100 mg ml−1 concentration). As the concentration rises, the crowding effect of
hemoglobin on mixing becomes more and more important. Specifically, we expect
that hemoglobin adsorbs more at the interface when its concentration increases. The
data in table 1 would appear to confirm this suspicion as it shows the interfacial
tension diminishes when the concentration of the Hb sample is increased. It seems
that the advection velocities in the experiment are increased, perhaps because the
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Figure 4. Mixing of 35 mg ml−1 Hb in smooth and bumpy mixers. Fluorescence intensity I ,
proportional to the concentration of the species produced by the binding of calcium ions to
the fluorescent dye, as a function of the number of half-cycles M passed through the serpentine
mixer. Dashed line: smooth mixer with flow rates of 0.2 and 2 µl min−1 for respectively the Hb
streams and the oil stream. Solid line: bumpy mixer with flow rates of 0.2 and 2 µl min−1 for
respectively the Hb streams and the oil stream.

interface is heavily crowded with Hb adsorbed and shear moves the interface in a
more solid-like fashion owing to the close-packed Hb. The role of interfacial effects
is addressed later on in this paper.

4. Formulation
For analysis we shall consider the top half of a channel with symmetrically placed

bumps on both sides (see figure 2). Fluid A represents the outer oil carrier fluid
whereas fluid B represents the inner fluids to be mixed. The lower half of the channel
can be obtained using a symmetry with respect to the centreline of the channel.
The plane ỹ = 0 is not a plane of symmetry in the experimental channel (figure 1).
However, we have also pursued calculations in the non-symmetric channel (bump
on one side only) and found similar results in all significant respects as presented in
the following sections: slip difference relaxing to zero after passage under a bump,
enhancement of interfacial stress at a bump, independence of the enhancement on
the lubrication layer thickness h(0). These facts are qualitatively exactly the same as
in the case of the symmetric channel, but with decreased quantitative magnitudes.
Therefore, we shall study the symmetric case for ease of exposition.

In the experiments, the plugs in the bumpy channels span about four times the
distance L̃ between adjacent bumps, which corresponds to a dimensionless length of
4. In the literature (Behrens et al. 1987; Coyle et al. 1987) there are estimates of the
disturbance to the flow associated with the front and the rear of the plugs; these
occur over dimensionless lengths of 1/2 × 1/8 × 4 = 1/4. Recall that the width to
length ratio of the plugs in bumpy channels is about 1/8 experimentally and that the
front and rear perturbations extend each of about 1/2 of the dimensionless width of
the plug. As 1/4 + 1/4 = 1/2 � 4, it is reasonable to neglect recirculation patterns.
In other words, we do not take into account the pressure gradients localized at the
front and rear of the plugs.
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When a finite drop interacts with the next bump, we expect a slight modulation
of the speed of the drop occurs. This would involve a deceleration before the bump,
followed by acceleration afterwards. This modulation in speed as a next bump is
encountered by the leading edge would also be associated with a time-dependent
modulation of the pressure gradient. This becomes unsteady. The bump represents
an obstacle to the drop passage requiring bending of the interface and thinning of
the lubrication layer. However, the temporal modulation in dp/dx, associated with
the finiteness of the drop simply does not matter in our qualitative explanation of
mixing enhancement, it is factored out in our analysis (see (7.1)). Therefore, we can
neglect the influence of long-range pressure gradients induced by the leading edge of
the droplet encountering the next bump. We study therefore the case of two infinite
fluid layers. In this case, the mass conservation of the long drop volume is attained
as the mass flux per length across the width of the internal fluid A remains constant
far from the drop’s leading edge (see § 6).

The geometry of the wall is prescribed by the channel half-width d̃w(x̃). The
interface between the two fluids is located at ỹ = h̃(x̃). This material line can be
oriented by the normal en and tangent et vectors at the interface. The interfacial
curvature is given by κ̃ = −∇̃S · en where ∇̃S = [I − en ⊗ en] · ∇̃ is the surface gradient
operator (Deen 1998). Hence, κ̃ = (d2h̃/dx̃2)[1 + (dh̃/dx̃)2]−3/2. Neglect of second-
order terms in dh̃/dx̃ leads to the simpler forms κ̃ ∼ d2h̃/dx̃2, en ∼ (−dh̃/dx̃)ex̃ + eỹ ,

et ∼ ex̃ + (dh̃/dx̃)eỹ , ∇̃S = ex̃(∂/∂x̃) + eỹ(dh̃/dx̃)(∂/∂ỹ). The steady state assumption
also leads to ∂/∂t̃ = 0.

4.1. Navier–Stokes equations

The balance of linear momentum for both fluids A and B reads

ρ̃AũA · ∇̃ũA = −∇̃p̃A + µ̃A∇̃2ũA, (4.1)

ρ̃B ũB · ∇̃ũB = −∇̃p̃B + µ̃B∇̃2ũB. (4.2)

The incompressibility of the fluids leads to

∂ũi

∂x̃
+

∂ṽi

∂ỹ
= 0, i = A, B. (4.3)

4.2. Boundary conditions

For the horizontal velocities we have: no slip at the wall, ũB(x̃, d̃w(x̃)) = 0; symmetry
condition at ỹ = 0, (∂ũA/∂ỹ)(x̃, 0) = 0; continuity of the horizontal velocity field at the
interface, ũA(x̃, h̃(x̃)) = ũB(x̃, h̃(x̃)). For the vertical velocities we have: no penetration
at the wall, ṽB(x̃, d̃w(x̃)) = 0; no penetration at ỹ =0, ṽB(x̃, 0) = 0; continuity of the
vertical velocity at the interface, ṽA(x̃, h̃(x̃)) = ṽB(x̃, h̃(x̃)) = ũA(x̃, h̃(x̃))(dh̃/dx̃) (where
continuity of the horizontal velocity at the interface and steadiness have been implicitly
used).

4.3. Normal and tangential stress balances at the interface

The Young–Laplace equation at the interface A–B is given by

[en · T̃i en]A−B = γ̃ κ̃, (4.4)

where γ̃ is the surface tension at the interface (one-dimensional γ̃ (x̃)), κ̃ is the
curvature and T̃i is the Cauchy stress tensor of the fluid i. Neglect of second-order
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terms in dh̃/dx̃ and (4.4) leads to

p̃A − p̃B + 2µ̃B

∂ṽB

∂ỹ
(x̃, h̃(x̃)) − 2µ̃A

∂ṽA

∂ỹ
(x̃, h̃(x̃)) = γ̃

d2h̃

dx̃2
. (4.5)

The tangential stress balance at the interface A–B is computed from

[et · T̃i en]A−B = −en · ∇̃Sγ̃ . (4.6)

Further manipulation leads to the following expression:

µ̃B

∂ũB

∂ỹ
(x̃, h̃(x̃)) − µ̃A

∂ũA

∂ỹ
(x̃, h̃(x̃)) = −dγ̃

dx̃
. (4.7)

5. Dimensionless variables
Now we introduce the dimensionless variables through x̃ = L̃x, ỹ = d̃y, h̃ = d̃h,

d̃w = d̃dw , ũi = Ũui , i = A, B . L̃ and d̃ refer to the lengths given on figure 2. Elsewhere
in the following, x and y are then dimensionless with different scales. Ũ is a scaling for
the horizontal velocity field. It shall be related to an experimental flow rate Q̃. Define
the lubrication parameter ε = d̃/L̃ and look for a scaling of the vertical velocity field
Ṽ and of the pressures p̃A and p̃B . The mass conservation equation immediately gives
Ṽ = εŨ .

We define a Reynolds number Re = ρ̃BŨ d̃/µ̃B . A scaling for the pressures is chosen
as P̃A = P̃B =(µ̃BŨ )/(d̃ε) = (µ̃BŨ L̃)/d̃2. We take the limit (εRe, ε) → (0 , 0 ). The
lubrication approximation leads to

∂pA

∂x
= Λ

∂2uA

∂y2
, (5.1)

∂pA

∂y
= 0, (5.2)

∂pB

∂x
=

∂2uB

∂y2
, (5.3)

∂pB

∂y
= 0. (5.4)

A viscosity ratio Λ = µ̃A/µ̃B emerges as a relevant parameter. Dimensionless
continuity equations read

∂ui

∂x
+

∂vi

∂y
= 0, i = A, B, (5.5)

The dimensionless boundary conditions read

uB(x, dw(x)) = 0, uA(x, h(x)) = uB(x, h(x)),
∂uA

∂y
(x, 0) = 0, (5.6)

vB(x, dw(x)) = 0, vA(x, 0) = 0, vA(x, h(x)) = vB(x, h(x)) = uA(x, h(x))
dh

dx
. (5.7)

Dimensionless Young–Laplace equation and tangential stress balance are as follows:
in dimensionless variables (4.5) reads

pA − pB − 2ε2

[
Λ

∂vA

∂y
(x, h(x)) − ∂vB

∂y
(x, h(x))

]
=

ε3

Ca
γ

d2h

dx2
. (5.8)
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We define the capillary number Ca = (µ̃BŨ )/γ̃0 where the A–B interfacial surface
tension γ̃ (x̃) = γ̃0γ (x) has the scaling γ̃0, which shall be related to experimental
surface tensions. In the same way, (4.7) becomes

∂uB

∂y
(x, h(x)) − Λ

∂uA

∂y
(x, h(x)) = − ε

Ca

dγ

dx
. (5.9)

Three distinct cases are to be explored. Case I. ε � Ca , where the surface tension
plays a subdominant role. We then have pA = pB = p and

∂uB

∂y
(x, h(x)) = Λ

∂uA

∂y
(x, h(x)). (5.10)

It is the case for instance where Ca → ∞; in other words where there is no surface
tension at the interface A–B. Equation (5.10) can also be obtained when the interfacial
tension is uniform. Case II. ε ∼ Ca , which corresponds to the experimental case (see
§ 8), where the surface tension affects both balances. Neglect of second and higher
orders in ε and the normal stress balance becomes pA = pB = p. Also, the tangential
stress balance is obtained as the following:

∂uB

∂y
(x, h(x)) − Λ

∂uA

∂y
(x, h(x)) ∼ −dγ

dx
. (5.11)

Case III. ε 	 Ca , where the scaling used thus far becomes inconsistent. This case,
which corresponds to some microfluidic applications, remains for future work. A
starting point would be to formulate a perturbation expansion with a uniform
surfactant concentration making rigid the interface at the leading order and a small
perturbation balancing the viscous shear stresses in magnitude (Park 1992).

6. Uniform interfacial surface tension
We now assume the interface between the two fluids possesses a surface tension

and that this surface tension is uniform (i.e. Case I). In this case, the tangential stress
balance is given by (5.10). The situation is physically equivalent to the case ε � Ca ,
with no tension at the interface. The dimensionless horizontal velocity fields are easily
computed:

uA(x, y) =
1

2Λ

dp

dx
[y2 − h2(x)] +

1

2

dp

dx

[
h2(x) − d2

w(x)
]
, (6.1)

0 � x � 1, 0 � y � h(x),

uB(x, y) =
1

2

dp

dx

[
y2 − d2

w(x)
]
, (6.2)

0 � x � 1, h(x) � y � dw(x).

We note that both fluid velocities are linearly proportional to the same pressure
gradient, whether it is steady or unsteady. The continuity equation (5.5) and
corresponding boundary conditions (5.6), (5.7) remain unchanged. The shear stress at
the interface A–B is then given by

τAB(x) =
∂uB

∂y
(x, h(x)) = −Λ

∂uA

∂y
= −p′(x)h(x), (6.3)

where (6.2) has been used. We assume dw(0) = 1. Analytical solutions are obtained
by solving the Reynolds lubrication equations for fluids A and B derived from the
continuity equations (5.5) and corresponding boundary conditions (5.6) and (5.7). The
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Figure 5. (a) Prescribed wall profile dw(x) of the channel. (b) Interface h(x) (dashed) and
wall dw(x) profiles. (c) Lubrication layer thickness l(x) = dw(x) − h(x). (d ) Pressure profile p(x)
in the channel. All quantities are dimensionless.

dimensionless relevant results hereby follow:

h(x) = h(0)dw(x), (6.4)

p′(x) = − 1

d3
w(x)

, (6.5)

τAB(x) =
h(0)

d2
w(x)

. (6.6)

The dimensionless thickness of the lubrication layer is given by l(x) = (1 − h(0))dw(x).
Therefore, τAB has a maximum at the apex of the bump. This location corresponds to
a minimum for the thickness of the lubrication layer and also to an inflexion point for
the pressure profile (see figures 5c and 5d ) as shown analytically with the expression
p′′(x) = 3d ′

w(x)/d4
w(x) (see figure 5b).

Next, we use (6.4) and (6.5) and replace in (6.1) and (6.2) to find the following
expressions for the horizontal velocity fields:

uA(x, y) =
1

2Λdw(x)

[
(1 − h(0)2)Λ + h2(0) − y2

d2
w(x)

]
, 0 � x � 1, 0 � y � h(x), (6.7)

uB(x, y) =
1

2dw(x)3
[
d2

w(x) − y2
]
, h(x) � y � dw(x). (6.8)

In the same way, the horizontal velocity fields at the interface and at y = h(x) and
y = 0 are

uh(x) = uB(x, h(x)) =
[1 − h2(0)]

2dw(x)
, (6.9)

u0(x) = uA(x, 0) =
[1 − h2(0)]

2dw(x)
+

h2(0)

2Λdw(x)
. (6.10)
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uh at the interface y = h(x) along the channel. (d ) Horizontal velocity u0 in the middle of the
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We look at the solution {p(x), h(x)} for a wall profile (bump) prescribed as a

Gaussian function dw(x) = 1 − ae−b(x−1/2)2 (see figure 5a) (see Appendix A for details).
The analytical solutions for interface profile (6.4), thickness of the lubrication layer
and pressure (6.5) are plotted thereafter (see figures 5b, 5c and 5d ) where h(0) = 0.90,
Λ =0.24, a = 0.7, b =20. The choice of parameters is intended to be suggestive of the
experimental conditions. h(0) was determined in accordance with interfacial surface
tension measurements (see table 1; Bretherton 1961) and verified visually.

At the bump at x = 1/2, there is an inflexion point for the pressure profile and
a thinning of the lubrication layer. A minimum in the wall profile under the bump
leads also to a maximum in the shear stress (6.6). At the same time, it provides a
maximum for the horizontal velocities at the interface y = h(x) (6.9) and at y = 0
(6.10). These results can be seen in figure 6. Physically, the thinning of the lubrication
layer B under the bump enhances the shear stress at the interface. Increased shear
stress at the interface leads to greater advection velocities in the interior fluid. This is
the basis for the enhancement of mixing.

Quantitatively, we find that the interfacial shear stress under the bump is enhanced
by about 11 times as compared to far from the bump. The thickness of the film
upstream of the bump h(0) is controlled by the mechanics near the drop’s leading
edge (Bretherton 1961; Hodges, Jensen & Rallison 2004). However, considering the
expression for the interfacial shear stress (6.6), we observe that the ratios of these
quantities between the cases with bump and without bump are independent of
h(0). Owing to this independence of h(0), the enhancement of convection through the
introduction of bumps is independent of h(0), thus independent of Ca . The magnitude
of the external film thickness h(0) has only a quantitative effect on mechanisms of
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Figure 7. Mixing of plugs composed of two-thirds 300mg ml−1 Hb and one-third 260mg ml−1

BSA characterized by examination of striations as visualized with calcein fluorescent dye. A
high concentration of calcein dye (5 mM) is initially confined to the one-third of the plug
(BSA part) but is rapidly redistributed by folding of the plug contents. (a) Striation thickness
along the bumpy serpentine mixer. (b) Images of plugs after every half-cycle along the bumpy
serpentine channel reveal striations folding in greater detail. Note that the pictures are taken
from the cross-section view (see figures 1 and 2). (Reprinted with permission from Liau et al.
(2005). Copyright 2005, American Chemical Society.)

mixing. We observe then stronger convective motions in the fluid phase not in contact
in the wall, which corresponds to stronger convective motions within the long plugs.

7. Quantification of the influence of bumps on mixing
We now want to relate the previous analysis to the mixing problem experimentally

conducted by Liau et al. (2005). At this point, we interpret the main elements of the
mixing problem in the framework of the LTM introduced by Wiggins & Ottino (2004)
and Sturman et al. (2006). The LTM framework mathematically captures the paradigm
of ‘crossing of streamlines’, sufficient condition for chaotic mixing. Indeed, the flow
along the course of the serpentine channel is ‘segmented’ due to a time periodic change
in the channel geometry: the alternation of two subunits as the location of the bumps
alternates from one side of the wall to the other side of the wall. In each subunit, there
is a distinct flow pattern with a specific ‘twist’, namely a specific shear gradient across
streamlines. Two distinct flow patterns are then superimposed, which enables ‘crossing
of streamlines’. The succession of two subunits (or half-cycles) constitute a cycle, and
the flow can be described by a mapping from the beginning of the cycle to the end
of the cycle. The latter mapping is the composition of two mappings, each a twist map.
The first twist map is the mapping of particles in the cross-section at the beginning of
the cycle to the cross-section at the half-cycle. The second twist map is the mapping
of particles from the cross-section at the end of the half-cycle to the cross-section
end of the cycle. The cross-section retained is sketched on figure 2. Indeed, striations
along these two dimensions are observed experimentally in the plugs (see figure 7).
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Figure 8. Sketch of the evolution of the slip with time t in the case of a plug flowing in
a straight channel. The solid lines link particles P0 and Ph. Recall that in the experimental
reality, the plugs are very long and present long rectangular shapes (see figure 3).

Hence, in the simplest framework, the flow may be seen as an elongational flow. It
is a succession of simple shear flows with periodic reorientation of material elements
relative to the flow streamlines, which can be further simplified to a sequence of
constant alternating shears (D’Alessandro, Dahleh & Mezic 1999). The shear or
‘twist’ will occur during the passage under a series of bumps during one half-cycle.
Then, the reorientation will occur when the plug transitions from one half-cycle to
the next half-cycle. Then a new shear or new ‘twist’ will occur during the passage
under a new series of bumps during the next half-cycle. . . etc. Now, keeping in mind
our goal to examine the differences between the flow in the serpentine channel with
and without bumps, it is clear that we should focus on the shearing flow that provides
the twist. After all, the re-orientation step is the same in the channels with and
without bumps. In our approach, we slightly differ from Ottino & Wiggins (2004) and
Sturman et al. (2006), however. Indeed, we are not looking at a uniform shear rate
but rather at a net shear, which captures better the transient influence of the passage
past a bump.

Stirring occurs by producing the maximum amount of interfacial area between two
initially segregated fluids and mixing occurs once the effects of diffusion are included
(Aref 2002). In two dimensions, the creation of interfacial area is connected to the
stretching of lines. The strength of the stretching is accounted by the net shear. In a
compact domain, mixing can be quantified by the striation thickness (see figure 7),
which shows that the flow within the plugs can be interpreted two dimensionally.
The striation thickness is inversely proportional to the interfacial area, due to the
incompressibility of the flow.

In the present work, we shall estimate the stretching that occurs as the two fluids
go past the bump. For this purpose, we interpret the flow as a transient shear flow
between a fluid particle P0 located at the centreline of the channel and a fluid particle
Ph located at the interface between the two fluids. The stretching, or more precisely
the striation thickness, will be determined from the estimated net shear associated
with the passage of a series of N bumps. The net shear is evaluated through a slip
analysis described in the following section. We determine then the striation thickness
after N bumps as a function s(N). The bumps are responsible for the development
of twist; hence the flow fits nicely into the useful framework of LTM introduced by
Wiggins & Ottino (2004) and Sturman et al. (2006), with the subtle difference we
look here at a net shear and not at a shear rate. Moreover, we can estimate the
contribution of the bumps to stretching in the flow using our simplified channel flow
geometry.

7.1. Interpretation in terms of slip

We compute the ‘slip’ (or relative longitudinal displacement) between a particle of
fluid P0 located in the middle of the channel at y = 0 and a particle of fluid Ph

located at the interface y = h(x) (see figure 8). That slip will correspond to the net
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shear described in the previous paragraph. In fact, we look at the evolution of the
segment [P0Ph], more precisely at the difference in horizontal coordinates of these
two particles (slip) at a time t: xs(t) = x0(t) − xh(t). We then compare that relative
longitudinal displacement, which we name here the difference of slip �xs(t) between
the case of a plug flowing in a straight channel and the case of a plug flowing in a
channel having a bump on its upper wall (see figure 2).

The particles’ horizontal coordinates in the centreline of the channel and at
the interface can be described as the following functions x0(t) = x0(t, x0(0)) and
xh(t) = xh(t, xh(0)). We assume that the particles start from the vertical axis of
symmetry of the plugs so that xh(0) = x0(0) = 0. We look at the particle paths for
P0 and Ph as the following dx0/dt = u0(x0) and dxh/dt = uh(xh). We eliminate time t

and link xh with x0 to obtain a relationship xh(x0). In other words,

dxh

dx0

= C
dw(x0)

dw(xh)
, (7.1)

where C = (1 + h2(0)Λ−1(1 − h2(0))−1)−1 and we have used (6.9) and (6.10). We
define the slip as a function of x0: xs(x0) = x0 − xh(x0); the latter relationship will be
computed in the cases of bumpy and smooth channels, in order to assess the effect
of the bumps. Note that because u0 and uh are both linear in dp/dx (see (6.9) and
(6.10)), the temporal modulation in dp/dx associated with the finiteness of the drop
(mentioned in § 4) is irrelevant to our explanation of mixing enhancement as the
temporal modulation of dp/dx factors out in (7.1).

7.1.1. Smooth channel

As the channel is straight, we have the straightforward relation between the particles’
horizontal positions from (7.1):

dxh

dx0

= C. (7.2)

Hence the slip in the case of no bumps is xsnb
= (1 − C)x0. Recall that x0(t) = (1 −

h2(0)(1 − Λ−1))t/2; we find eventually:

xsnb
=

h2(0)

2Λ
t. (7.3)

7.1.2. Bumpy channel

The relation between the particles’ horizontal positions changes with the
introduction of a bump in the channel. In other words,

dxhdw(xh) =
1 − h2(0)

2
dt, (7.4)

where dxh represents the differential change of the dimensionless coordinate xh during
the differential dimensionless time dt . We write dw(x) = 1 − f (x) (where f (x) is the
bump shape) and use implicitly xh(0) = 0 to integrate between t = 0 and t:

xhb
(t) −

∫ xhb
(t)

0

f (x) dx =
1 − h2(0)

2
t. (7.5)

Similarly, we find

x0b
(t) −

∫ x0b
(t)

0

f (x) dx =
1 − h2(0)

2
t +

h2(0)

2Λ
t. (7.6)
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Figure 9. Slips and slip difference as a function of time t for h(0) = 0.90, Λ= 0.24, a = 0.7 and
b = 20. (a) Slips xsb

(t) for the bumpy channel (dashed) and xsnb
(t) for the smooth channel. (b)

Evolution of the slip difference �xs(t) = xsb
(t) − xsnb

(t) between bumpy and smooth channels
with dimensionless time t . All quantities are dimensionless.

Define now the slip for the case with the bumps as xsb = x0b
−xhb

. After some algebra,
we find

xsb = xsnb
+

∫ x0b
(t)

xhb
(t)

f (x) dx. (7.7)

The latter equation shows that the difference of slip at time t between bumpy and
smooth channels comes from the contribution of the ‘volume’ �xs(t) = xsb (t) − xsnb

(t)
of the bump (integral) between the particles’ P0 and Ph horizontal positions under
the bump at time t (recall f (x) is the profile of the bump).

7.1.3. Slip difference for one bump

From the plots on figures 9(a) and 9(b), one observes that there is a region for
which there is a non-zero slip difference between bumpy and smooth channels. In
other words, there is an interval of time t1 � t � t2 for which such a difference of
slip indeed occurs. In particular, there is an optimum time topt for which this slip
difference is maximal (clearly visible on figure 9b).

Let us now look more precisely at this region where a difference of slip occurs.
Suppose that the bump is centred around 1/2 and disappears upstream for 0 �
x � 1/2 − δ/2 and downstream for 1/2 + δ/2 � x � 1. Its influence is of length δ.
Mathematically, it means that f (x) � 0 for 0 � x � 1/2 − δ/2 and 1/2 + δ/2 � x � 1.
Recall x0b

(t) >xhb
(t) at all time t . If x0b

(tend) � 1/2 − δ/2, then xsb (tend) � xsnb
(tend).

The two points have not gone yet under the bump, they are before the bump. We
encounter no-slip difference. If xhb

(tend) � 1/2+ δ/2, then also xsb (tend) � xsnb
(tend). The

two points have both already gone past the bump. We encounter no-slip difference. It
is now natural to define the two following times t1 and t2 given by x0b

(t1) = 1/2 − δ/2
and xhb

(t2) = 1/2 + δ/2 (see figure 10). Further algebra leads to

t1 =
1 − δ

1 − h2(0)(1 − Λ−1)
, (7.8)

t2 =

1 + δ − 2

∫ (1+δ)/2

(1−δ)/2

f (x) dx

1 − h2(0)
. (7.9)

7.1.4. Slip difference for N bumps

The microchannels used by Liau et al. (2005) present an alternation of half-cycles
with each one containing N bumps in a row (N = 10). In other words, each half-cycle
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Figure 10. Sketch of the evolution of the slip in the case of a plug flowing in a bumpy
channel. For simplicity, plugs are not represented and only the half-width of the channel is
sketched. The interface between the two fluids A and B is represented by the dashed line. The
solid lines link particles P0 and Ph. At time t1, particle P0 is reaching the bump. At time t2,
particle Ph is leaving the bump. At time tf , particle P0 is reaching the end of the unit. Recall
that a unit is defined by a dimensionless horizontal length of 1.

contains N unit cells with each one of them containing a bump. In the case of
smooth serpentine channels, each half-cycle contains N unit cells too, but each one
of them is a smooth channel. The so-called ‘unit’ has a dimensionless length of 1
or a dimensional length of 1/Nth the length of the half-cycle. Define tf as the time
the plug needs to go through a unit (see figure 10). In other words, tf is given by
x0b

(tf ) = 1. The previous analysis shows that we need to have t1 � tf � t2 in order
to have a slip difference between the case with bumps and the case without bumps.
Hence, providing t1 � tf � t2, we have a significant difference between the slips for
bumpy and smooth channels at the end of a unit given by

�xs(tf ) =

∫ x0b
(tf )

xhb
(tf )

f (x) dx (7.10)

with x0b
(tf ) and xhb

(tf ) given by the transcendental expressions:

xhb
(tf ) −

∫ xhb
(tf )

0

f (x) dx =
1 − h2(0)

2
tf , (7.11)

x0b
(tf ) −

∫ x0b
(tf )

0

f (x) dx =
1 − h2(0)(1 − Λ−1)

2
tf . (7.12)

In the following analysis, we will compose N times the slip difference obtained through
(7.10). The dimensionless time tf needed for the particle P0 to go through one bumpy
unit is

tf = 2(1 − h2(0)(1 − Λ−1))−1

(
1 −

∫ 1

0

f (x) dx

)
.

If we choose h(0) = 0.90, Λ =0.24, a = 0.7 and b = 20, we obtain the dimensionless
time tf ∼ 0.41, for example. Now look at the slip differences given by a single bump and
N closely spaced bumps. The latter results can be seen on figure 11. The comparison
between the two plots suggests that a non-zero slip difference occurs as long as the
plug has not gone past the bump or the set of bumps. The new insight one obtains
from these plots is quite remarkable. Mixing will be enhanced by bumps on the walls
of the serpentine channel if the bumps are sufficiently close to each other (suggested
by figure 11a) but also if the alternation of half-cycles (each half-cycle contains N

bumps) is sufficiently closely spaced one to the next before the slip difference decays
to zero (as shown on figure 11b). When these things are true, the reorientation step
(see below) takes place before the slip difference relaxes to zero. This is the key insight.
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Figure 11. Slip difference �xs(t) = xsb
(t) − xsnb

(t) for (a) 1 bump and (b) N bumps in a row.
In (b), the bumps are closely spaced enough that the slip difference does not relax to 0 before
the next bump in the sequence. All quantities are dimensionless.

7.2. An optimization problem

Note we can find an optimum time topt (figure 9b) given by the maximization of

�xs(t) =
∫ x0b

(t)

xhb
(t) f (x) dx, where f is the prescribed wall profile. Consequently, the

mixing will be enhanced when tf = topt , in other words when the parameters h(0), Λ

and f are chosen accordingly. The parameters to be adjusted are the viscosity ratio Λ,
the thickness of the lubrication layer through h(0), the geometry of the bump through
f (for a Gaussian, the parameters of the amplitude a and the standard deviation b).
Also, the shape of the plug would eventually need to be taken into account through
the parameter k = r̃/L̃. k is here the ratio of the radius of the plug over the distance
between adjacent bumps in the channel. The latter parameter certainly is related
to the time tf required to go past one bump. For brevity, we do not include the
parameter k in our analysis here. The study of this optimization problem is largely
left for future work. In the meantime, we refer the reader to previous computational
work done by Muradoglu & Stone (2005) who quantified the influence of various
parameters on the mixing within droplets in the case of a smooth serpentine channel.

7.3. Shear flow analysis

We interpret the flow (with geometry sketched in figure 2) as a time-dependent shear
flow where the magnitude of the net shear is given by the slip xs(t). We are working
here in coordinates moving downstream with x0(t). The dimensionless deformation of
the continuum is approximated by{

x1 = X1 − xs(t)X2,

x2 = X2,
(7.13)

where (x1(0), x2(0)) = (X1, X2), X1 and X2 are constants. The displacement is given by{
ξ1 = −xs(t)X2,

ξ2 = 0.
(7.14)

Recall tf is the time needed to go through one bump. After one bump then, the
displacement (ξ1(tf ), ξ2(tf )) is obtained. Compose N bumps in a row, the ensuing
displacement is u(N) = −Nxs(tf )X2 E1. Define the displacement gradient tensor
H(N) = ∂u/∂ X which is here computed as

H(N) = −Nxs(tf )E1 ⊗ E2. (7.15)
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Figure 12. A square of unit area of two segregated fluids after the passage through N units.
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Figure 13. Bumpy wall profiles for (a) approach 1 with one bump prescribed by the profile
f (x); (b) approach 2 with N bumps prescribed by the profile H (x). All quantities are
dimensionless.

The finite strain tensor for the deformation in matrix form is

(E(N)) =

[
0 −Nxs(tf )

−Nxs(tf ) N2x2
s (tf )

]
. (7.16)

Now look at the stretching of a line element in the flow. For this purpose, we take a
vector M such that ‖ M ‖ = 1 and transform it into the vector λ(N)m of magnitude
λ(N). The stretching λS(N) is given by λ2

S(N) = max{1 + 2M · E(N)M, M ∈ �2, ‖ M ‖
= 1}. It corresponds to the maximal eigenvalue of E(N). The calculation gives

λS(N) =
1√
2

[
2 + N2x2

s (tf ) + Nxs(tf )(N2x2
s (tf ) + 4)1/2

]1/2
. (7.17)

We assume that when N bumps are in a row in a half-cycle of the serpentine, they
participate only in the shear-induced stretching of the flow (Ottino & Wiggins 2004;
Sturman et al. 2006) and not in reorientation. The conservation of mass principle
(sketched on figure 12) gives after N bumps:

λS(N)s(N) = 1, (7.18)

where s(N) is the striation thickness obtained after N bumps. Hence,

s(N) =
√

2
[
2 + N2x2

s (tf ) + Nxs(tf )(N2x2
s (tf ) + 4)1/2

]−1/2
. (7.19)

A similar analysis for a smooth serpentine channel with a different xs(tf ) would
give a different s(N) after N smooth units.

7.4. Comparison of the true slip versus stretch from the composite finite strain tensor

We compare our approach used so far, named approach 1 in the following, with
another approach named approach 2 (see figure 13). Approach 2 consists of
determining the slip between particles P0 and Ph after the latter particles have
gone past N bumps. We compare the slip obtained with the composition of N

bumps used so far giving the following slip xs1 (t) = Nxs(t). We name H (x) the wall
profile corresponding to the assembly of N bumps in a row (figure 13b) so that
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dw(x) = 1 − H (x). This time, for approach 2, x ∈ [0, N ]. Following the same routine
as for approach 1, we determine the difference of slip between bumps and no bumps
for approach 2 and find

xsb2
= xsnb2

+

∫ x0b
(t)

xhb
(t)

H (x) dx. (7.20)

If by analogy with approach 1, we now call Tf the time to compose the N bumps
with the approach 2, we have

xsb2
= xsnb2

+

∫ x0b
(Tf )

xhb
(Tf )

H (x) dx. (7.21)

Note also that

x0b
(t) −

∫ x0b
(t)

0

H (x) dx =
1 − h2(0) + Λ−1h2(0)

2
t, (7.22)

xhb
(t) −

∫ xhb
(t)

0

H (x) dx =
1 − h2(0)

2
t. (7.23)

Therefore x0b
(Tf ) = N leads to the following time Tf :

Tf = 2

(
N −

∫ N

0

H (x) dx

)
/(1 − h2(0) + Λ−1h2(0)). (7.24)

Note that by construction
∫ N

0
H (x) dx ∼ N

∫ 1

0
f (x) dx so that we have Tf ∼ Ntf . Now,

by comparing approaches 1 and 2,

xs1 − xs2 =

∫ xhb
(Ntf )

0

H (x) dx − N

∫ xhb
(tf )

0

f (x) dx, (7.25)

which can also be seen as

xs1 − xs2 = xhb
(Ntf ) − Nxhb

(tf ). (7.26)

Numerically, the difference between the two approaches, evaluated through (7.26) is
small. Indeed for N = 10, we find (xs1 − xs2 )/xs1 ∼ 0.02. The latter result confirms the
legitimacy of our approach 1 used thus far. In other words, it is a fine approximation
to compose the effects of single bumps when considering the net shear due to flow
past a set of bumps.

7.5. Asymmetric bump

For completeness, we note the following. In the case where we have two Newtonian
fluids and the bump is asymmetric (figure 14a), we find that sufficiently long after
the plug has gone past the bump, we have no difference in slips between the case
with bumps and the case with no bumps. The reason is straightforward as even when
there is a change in symmetry properties in the bump profile, the line integral,

�xs(t) =

∫ x0b
(t)

xhb
(t)

f (x) dx,

still holds.

7.6. The transfer of shear stress to a non-Newtonian inner fluid.

This work is presented in detail in Appendix B. We find here that the slip difference
between bumpy and smooth mixers can be made persistent (rather than evanescent)
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Figure 14. (a) Asymmetric bump profile. (b) Slip difference between bumps and no bumps
in the case of an asymmetric bump profile. All quantities are dimensionless.

by changing the rheology of the interior fluid, e.g. from Newtonian to non-Newtonian.
Indeed, we show that the particle Ph accelerates less than the particle P0 under the
bump for a shear-thinning fluid whereas the particle Ph accelerates more than the
particle P0 under the bump for a shear-thickening fluid. For a Newtonian fluid, the
particle Ph accelerates as much as the particle P0 under the bump.

8. Transfer of shear stress to the inner fluid in the presence of insoluble
surfactants

In the foregoing section (with details in Appendix B), we saw that one way to affect
the intensity of advection caused by a bump is through a change in rheology of fluid
A to non-Newtonian. In this section, we show another way is through the effects of
a surfactant on the A–B interface.

8.1. Interfacial transport equation

For a surfactant of surface concentration at the interface A–B, we have the interfacial
transport equation (Edwards, Brenner & Wasan 1991)

∂Γ̃

∂t̃
+ ∇̃S · [Γ̃ ũh] = D̃S∇̃2

SΓ̃ + D̃(∇̃C̃) · eñ(ỹ = h̃(x̃)), (8.1)

where Γ̃ is the surface-excess of surfactant at the interface A–B, C̃ is the bulk
concentration of surfactant in fluid A, D̃S is the diffusion coefficient of surfactant on
the interface A–B, D̃ is the diffusion coefficient of surfactant in the bulk fluid A. We
use dimensionless quantities from Γ̃ = Γ̃0Γ , C̃ = C̃0C, ũh = Ũuh, ṽh = εŨvh, h̃ = d̃h,
x̃ = L̃x, ỹ = d̃y, t̃ = τ̃ t to derive the dimensionless transport equation:

∂Γ

∂t
+

∂

∂x
[Γ uh] + ε2 ∂

∂x
[Γ vh]

dh

dx
=

1

Pes

∂2Γ

∂x2

(
1 + ε2

(
dh

dx

)2
)

− εβ

Pe

dh

dx

∂C

∂x
(y = h(x)) +

β

εPe

∂C

∂y
(y = h(x)), (8.2)

where τ̃ = L̃/Ũ = d̃/(Ũε), PeS =(Ũ L̃)/D̃S = (Ũ d̃)/(εD̃S), Pe =(Ũ d̃)/D̃ and
β = (d̃C̃0)/Γ̃0. As done previously, we drop the terms of orders ε2 and ε3 in
(8.2):

ε
∂Γ

∂t
+ ε

∂

∂x
[Γ uh] =

ε

P es

∂2Γ

∂x2
− β

Pe

∂C

∂y
(y = h(x)). (8.3)
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Now consider a steady regime and the case of insoluble surfactants (C = 0), the
interfacial transport equation simplifies to the gathering of the following terms of the
same magnitude of order ε:

d

dx
[Γ uh] =

1

Pes

d2Γ

dx2
. (8.4)

8.2. Elasticity relation

Close to equilibrium and for dilute surfactant solutions, the dimensionless
surface tension gradient can be linearly correlated to the dimensionless surfactant
concentration gradient at the interface (Edwards et al. 1991; Eggleton, Pawar &
Stebe 1999):

∇Sγ = −αE∇SΓ, (8.5)

where E is the elasticity parameter of the surfactant and α = Γ̃eq/Γ̃∞ is the fraction of

the interfacial area that is initially covered by surfactant. Γ̃eq is the excess surfactant

density on the surface A–B at equilibrium and Γ̃∞ is the upper bound of surfactant
concentration. We transform the elasticity relation (8.5) into dimensionless form
dγ /dx = −αEdΓ/dx and obtain the following dimensionless stress balance:

∂uB

∂y
(x, h(x)) − Λ

∂uA

∂y
(x, h(x)) = εEl

dΓ

dx
, (8.6)

where El = αE/Ca . The parameter εEl
= εαE/Ca appears as a new relevant

dimensionless group. Following our previous analysis, three distinct cases are to
be explored in terms of the values of the parameter εEl

. Case I. When εEl
� 1, the

surface tension on the interface plays a subdominant role. The latter case has been
studied in the previous part. Case II. When εEl

∼ 1, the surface tension at the interface
does have a significant influence. This is the case we intend to address in this part.
Case III. When εEl

	 1, the scaling used so far in our lubrication approximations is
not valid anymore. Literature data (Eggleton et al. 1999) give the following order of
magnitude for the elasticity parameter E ∼ 0.2, which leads to values of εEl

ranging
from 0.07 to 0.7.

We introduce the dimensionless group εEl
and obtain the following horizontal

velocity fields:

uA(x, y) = − 1

2Λ

dp

dx
[h2(x) − y2] +

1

2

dp

dx

[
h2(x) − d2

w(x)
]
+ εEl

dΓ

dx
[h(x) − dw(x)] , (8.7)

0 � x � 1, 0 � y � h(x),

uB(x, y) = −1

2

dp

dx

[
y2 − d2

w(x)
]
+ εEl

dΓ

dx
[y − dw(x)] , (8.8)

0 � x � 1, h(x) � y � dw(x).

8.3. Numerical solutions

We look at the solution {p(x), h(x), Γ (x)} for a wall profile prescribed as a Gaussian

function dw(x) = 1 − ae−b(x−1/2)2 (figure 5a). To obtain the solution, we solve the
Reynolds lubrication equations for fluids A and B, coupled to the interfacial transport
equation (see Appendix A for details). To facilitate the calculations, the interfacial
transport equation is integrated as

Γ (x)uh(x) =
1

PeS

dΓ

dx
+ Γ (∞)uh(∞), (8.9)
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Figure 15. (a) Wall dw(x) and interface h(x) (dashed) profiles. (b) Pressure profile p(x) in the
channel. (c) Lubrication layer thickness l(x) in the channel. (d ) Surfactant concentration Γ (x)
at the interface A–B along the channel. All quantities are dimensionless.

where we assumed that the surfactant gradient is negligible at infinity. If we look at
the interfacial transport equation (8.9) in more detail, we can study two limiting cases.
Firstly, we assume 1/P eS is large, in other words we have attained the diffusion limit.
Then, (8.9) simplifies to dΓ/dx = 0. If we prescribe the boundary condition Γ (0) = 1,
we obtain Γ (x) = 1 all along the channel. We have come back to the case of constant
interfacial tension studied previously. Secondly, we assume that 1/P eS is small, in
other words we have attained the convection limit and obtain the simplified version
of (8.9):

Γ (x)uh(x) = Γ (∞)uh(∞). (8.10)

Therefore a maximum in the interfacial velocity profile corresponds to a minimum in
the interfacial surfactant concentration. Also, we can infer trivially from (8.10) that
the product Γ (x)uh(x) is even with respect to the location of the bump in the middle
of the channel. However, this does not mean though that each one of Γ and uh is
symmetric with respect to the location of the bump.

8.4. Convection limit

The numerical solutions for interface profile, pressure, lubrication layer thickness
and surfactant concentration at the interface A–B are plotted in (see figure 15) for
h(0) = 0.90, Λ = 0.24, a = 0.7, b = 20, D̃S =10−10 m2 s−1. The choice of parameters is
intended to be suggestive of the experimental conditions. We shall set εEl

= 1 so that
the Poiseuille part of the flow field and the Marangoni stresses are of the same order
of magnitude. Also, we have attained here the convection limit as PeS = 105.

As in the case of no insoluble surfactants at the interface, under the bump at
x = 0.50, there is an inflexion point for the pressure profile. But, at the same time,
the presence of the bump at x = 0.50 delocalizes the other extrema. The surfactant
concentration and the lubrication layer thickness present minima around x = 0.34.
The horizontal velocity at the interface y = h(x) (figure 16c) presents a maximum at
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the same location as the location of the minimum of the surfactant concentration.
The shear stress (figure 16b) presents a maximum around x = 0.31 and a minimum
around x = 0.53. Meanwhile, there is a maximum for the horizontal velocity at y = 0
(figure 16d ) under the bump (x = 0.50). Quantitatively, the interfacial shear stress
presents a maximum of about 2.6 times more as compared with far from the bump
and a minimum of about 5.8 times less as compared with far from the bump this
time.

8.5. Transition from diffusion limit to convection limit

We see a transition from the diffusion limit to the convection limit as the interfacial
diffusivity D̃S is decreased. Surfactant gradients or Marangoni stresses start to appear
when 1/P eS changes from superior to 1 to inferior to 1. This is confirmed numerically
in the previous calculations as the surfactant concentration profile Γ (x) changes from
a ‘diffusive’ profile to a ‘convective’ profile when D̃S ∼ 10−5 m2 s−1. In other words,
we see Marangoni stresses and a significant influence of insoluble surfactants for
interfacial diffusion coefficients D̃S lower than 10−5 m2 s−1. The literature (Chang &
Franses 1995) gives the following order of magnitude for D̃S: D̃S ∼ 10−10 m2 s−1. We
are then in the convection limit.

8.6. Influence of the elasticity parameter E

Once we have reached the convection limit, there is an influence of the surfactants on
the flow. We now study the influence of the parameters E and α on the flow. In the
previous calculations, we have chosen εEl

= 1 so that the order of magnitude of the
Marangoni stresses can be the same as the order of magnitude of the Poiseuille part
of the flow. If we have εEl

∼ 0.1 or of lower order of magnitude, then the influence
of surfactants on the flow and consequently on the mixing becomes negligible. If we
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Perfluorinated surfactant addition 1:10 1:5 1:2
Hb concentration (mgml−1) 35 35 35
Λ 0.24 0.24 0.24
Interfacial surface tension (mN m−1) 3.47 ± 0.47 3.76 ± 0.56 3.18 ± 0.43
Ca 0.12 0.11 0.13

Number of half-cycles M for
full mixing in bumpy channel (experimental) 4 10 10

Table 3. Experimental results obtained for samples of 35 mg ml−1 Hb with different
concentrations of insoluble surfactants in the oil carrier fluid with flow rates of 2 µl min−1 for
the oil stream and 0.2 µl min−1 for Hb streams. The viscosity of the oil carrier is supposed to
be invariant with the insoluble surfactant concentration: we keep µ̃B = 4.88 mPa s.
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Figure 17. Interfacial shear stress with (dashed) or without (solid, i.e. εEl
= 0) insoluble

surfactants for different values of the parameter εEl
. The larger the dashes the greater the

value of εEl
. We have chosen εEl

∈ {0.1; 0.5; 1; 2} and also h(0) = 0.90, Λ= 0.24, a = 0.7, b = 20,
DS = 10−10 m2 s−1. All quantities are dimensionless.

have εEl
∼ 1 or of higher order of magnitude, then the influence of surfactants on the

flow and consequently on the mixing becomes significant. One should pay attention
here not to go too high in the parameters E and α otherwise the scaling εEl

∼ 1 will
be violated and our lubrication approximations so far used will not be valid anymore.

Figure 17 clearly shows the influence of the surfactants on the interfacial shear
stress. The insoluble surfactants both diminish the amplitude of the interfacial shear
stress and delocalize the maximum of the interfacial shear stress from under the
bump (x = 0.50) to upstream of the bump. The more ‘elastic’ the surfactant is, the
more the interfacial shear stress under the bump is reduced or even transformed into
a minimum under the bump (see figure 17). As a conclusion, insoluble surfactants
have a significant influence on the mixing only for values of the parameter εEl

� 1.
They diminish mixing for the approximate range 0.1 � εEl

� 2. As εEl
increases, there

is a longer patch of elevated shear before bump.

8.7. Comparison with experimental data

Table 3 shows that increasing the surfactant addition in the oil carrier stream
diminishes the mixing in bumpy channels. This is what the comparison of 1:5 and 1:2
surfactant data with 1:10 surfactant data suggests. The comparison of 1:5 surfactant
and 1:2 surfactant data suggests that the interface has reached saturation. Recall
that ε = 10/24 ∼ 0.42 (from the channel dimensions L̃= 24 µm and d̃ =10 µm, which
implies bumps sufficiently close to each other), so that we obtain ε/Ca ∼ 3.5 and
εE/Ca ∼ 0.7 for all three experiments. εEl

will now depend on α. In the saturation
case, α ∼ 0.99 so that εEl

∼ 0.69, which puts in the range where insoluble surfactants
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have an influence on mixing in the sense that they diminish mixing. In the 1:10
surfactant case, we can imagine that α is small enough, say perhaps α ∼ 0.1 so that
the influence of insoluble surfactants (εEl

∼ 0.07) on the mixing becomes negligible.
More experimental work would be valuable to explore these interesting phenomena.

Coming back to the framework exposed by (B.16) (see Appendix B), in the case of
insoluble surfactants at the interface of two Newtonian fluids, we have

G(x) =
1

4Λ

[(
dp

dx

)
∞

(
dp

dx

)[
h2

∞d2
w − h2d2

w∞

]]

+
εEl

2Λ

[(
dp

dx

)
∞

(
dΓ

dx

)
h2

∞(dw − h)

]
− dp

dx

(
dΓ

dx

)
∞

h2(dw∞ − h∞). (8.11)

If, in addition, we assume (dΓ/dx)∞ = 0, we then obtain the following:

G(x) =
1

4Λ

(
dp

dx

)
∞

dp

dx

[
h2

∞d2
w − h2d2

w∞

]
+

εEl

2Λ

(
dp

dx

)
∞

dΓ

dx
h2

∞(dw − h). (8.12)

After sufficiently long times after the plug has gone past the bump, the slip difference
between bumps and no bumps reaches a plateau (see figure 18).

We now look at �xs(t) and D(x) = (uh(∞)/uh(x))− (u0(∞)/u0(x)) with respect to εEl

(see figures 18 and 19). We see that the interfacial velocity accelerates less under the
bump when the strength of interfacial surfactants increases. In other words, interfacial
surfactants decrease the interfacial velocity which results into a positive non-zero slip
difference.
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9. Future work
Surface tension measurements have shown that the insoluble surfactants used in

the experiments do not have a strong influence on the interfacial tension (see table
1). Therefore, we suspect that changes of interfacial tension are due to adsorption of
the crowding agents BSA and Hb at the interface. Consequently, it will be interesting
to consider soluble surfactants in the problem. Indeed, we suspect that adsorption
of crowding agents at the interface strongly affects the mixing. Consideration of
adsorption of crowding agents will involve studying the bulk transport equation in
solution of Newtonian fluid A and requires the introduction of a supplementary
dimensionless unknown bulk concentration of soluble surfactant C. In the same
time, it modifies the dimensionless interfacial transport equation with the addition
of flux terms. A solution of this problem consists of {p(x), h(x), Γ (x), C(x, y)} at
steady state. The latter should satisfy the Reynolds lubrication equations for fluids
A and B, the interfacial transport equation and the bulk transport equation. This
will also require the introduction of boundary conditions for the bulk concentration
C. In addition, the introduction of a kinetic condition or an equilibrium partition
of the type Langmuir or Frumkin isotherm (Graham & Phillips 1979a ,b) will be
needed: it will relate the interfacial surfactant concentration and the bulk surfactant
concentration. This problem of soluble surfactants remains for future work. A start
is to use a cross-film average such as in Jensen & Grotberg (1999).

10. Conclusion
We have presented here an analysis of a simpler problem that confirms the

experimental observations of mixing enhancement within drops in serpentine channels
when bumps are present on the channel walls. Our analysis qualitatively confirms
that the protrusions on the walls will enhance mixing in plugs of Hb and BSA.
In addition, the analysis confirms that it is more difficult to mix non-Newtonian
fluids such as BSA in such devices. The analysis also confirmed that the presence of
insoluble surfactants tends to reduce mixing. Still, a broader field of investigations
lies ahead as experiments suggest considerable adsorption of proteins at the oil–plug
interface. Further analysis should include modelling the adsorption and desorption
of proteins at the interface.

The keys to relating the flow in the long drops (in the experiments) to the infinite
two-fluid channel flow we analysed are as follows. The pressure gradient modulation
associated with interaction of a moving plug with the next bump factors out of our
slip analysis. The analysis further focuses on the ratio of shear stress enhancement
caused by the bump; the ratio is insensitive to the film thickness away from the bump,
which quantity is determined by the mechanics at the leading edge of the plug. In
this way, the analysis of the simpler flow captures the key mechanisms of the flows
observed in the experiments.

Physically, this paper demonstrates that the thinning of the lubrication layer B at
the bump enhances the shear stress at the interface and that increased shear stress
at the interface leads to greater advection velocities in the interior fluid A. This
is the basis for the enhancement of mixing. In addition, when the interior fluid is
Newtonian, we have shown that mixing will be enhanced by bumps on the walls of
the serpentine channel if the bumps are sufficiently close to each other but also if the
alternation of half-cycles is sufficiently closely spaced one to the next. When these
things are not true, the slip difference between bumpy and smooth channels relaxes to
zero. Moreover, the slip difference between bumpy and smooth mixers can be made
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BSA concentration 10 mgml−1 50mgml−1

Λ 0.20 0.20
Number of half-cycles M for
full mixing in bumpy channel (experimental) 7 9

Hb concentration 10 mgml−1 35mgml−1

Λ 0.22 0.24
Number of half-cycles M for
full mixing in bumpy channel (experimental) 3 4

Table 4. Experimental results obtained for samples of different BSA and Hb concentrations
with flow rates of 2 µl min−1 for the oil stream and 0.2 µl min−1 for BSA/Hb streams.

persistent (rather than evanescent) by changing either the rheology of the interior
fluid (from Newtonian to non-Newtonian for instance) or by modifying the structure
of the interface (by populating it with insoluble surfactants, for example).
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of A. L., V. B. and J. H. D. C. was supported by a grant from the National Institutes
of Health, General Medical Sciences.

Appendix A. Boundary conditions implemented in Mathematica
For the cases of (a) two Newtonian fluids A and B and no surfactants, (b)

one non-Newtonian fluid A, one Newtonian fluid B and no surfactants, we used
the following boundary conditions: h(0) = 0.90, p(0) = 1, p′(0) = −1. Now, for the
case of two Newtonian fluids A and B and insoluble surfactants at the interface,
we used the following boundary conditions: h(0) = 0.90, p(10) = −10, p′(10) = −1,
Γ (10) = 1, Γ ′(10) = 0. In the latter case, we had to constrain the boundary conditions
downstream so that Mathematica (Wolfram Research 2005) could solve the partial
differential equations and allow for physically realistic results.

Appendix B. Transfer of shear stress to a non-Newtonian inner fluid
B.1. Results

Experimentally (see table 4), it has been shown it is harder to mix BSA (BSA) (non-
Newtonian) than Hb (Newtonian) in bumpy channels. We qualitatively verify this
empirical fact with our model.

We now assume that fluid A is non-Newtonian such as many crowding agents. In
particular, BSA is shear thinning (Ikeda & Nishinari 2000). We consider the following
power-law model (Bird, Armstrong & Hassager 1987) with n= 0.1 (Ikeda & Nishinari
2000) to describe its dimensional shear stress:

τ̃x̃ỹA
= m̃

∣∣∣∣∂ũA

∂ỹ

∣∣∣∣
n−1

∂ũA

∂ỹ
, (B 1)

where m̃ and n are rheological constants for fluid A. The fluid B remains Newtonian in
the following. We choose a power-law model rather than a Carreau model (Bird et al.
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Figure 20. (a) Lubrication layer thickness l(x) = dw(x) − h(x) along the channel. (b) Pressure
profile p(x) in the channel. All quantities are dimensionless.

1987) to facilitate analysis. Also, due to the small dimensions of the channel, we expect
high shear rates in the experiments. We solve the modified Navier–Stokes equations
and assume dp/dx < 0. We obtain the dimensionless horizontal velocity fields:

uA(x, y) =

(
−dp

dx

)1/n

/((1/n + 1)Λ)[h1/n+1(x) − y1/n+1]

+
1

2

dp

dx

[
h2(x) − d2

w(x)
]
, 0 � x � 1, 0 � y � h(x), (B 2)

uB(x, y) =
1

2

dp

dx

[
y2 − d2

w(x)
]
, 0 � x � 1, h(x) � y � dw(x), (B 3)

where Λ = m̃/µ̃B(Ũ/d̃)n−1 is a dimensionless group representing a viscosity ratio
between the two fluids. In order to apply our slip analysis, we examine the horizontal
velocity fields at y = 0 and at the interface y = h(x):

u0(x) =

(
−dp

dx

)1/n

/((1/n + 1)Λ)[h1/n+1(x)] +
1

2

dp

dx

[
h2(x) − d2

w(x)
]
, (B 4)

uh(x) =
1

2

dp

dx

[
h2(x) − d2

w(x)
]
. (B 5)

We prescribe in our numerical simulations n and Λ (viscosity ratio), independently
of the parameters contained in Λ. We look at the solution {p(x), h(x)} for a wall

profile prescribed as a Gaussian function dw(x) = 1 − ae−b(x−1/2)2 (see figure 5a) (see
Appendix A for details). The numerical solutions for lubrication layer thickness and
pressure are plotted in figure 20 for h(0) = 0.90, Λ =0.20, n= 0.1, a =0.7 and b = 20.
The choice of parameters is intended to be suggestive of the experimental conditions.
Results shown on figure 21 can be compared with the Newtonian results shown on
figure 6.

As in the case of two Newtonian fluids (see figures 5 and 6), under the bump
at x =1/2, there is a thinning of the lubrication layer and an inflexion point for
the pressure profile. A minimum in the wall profile under the bump leads also to a
maximum in the shear stress (figure 21b). At the same time, it provides a maximum
for the horizontal velocities at the interface y = h(x) and at y = 0 (figure 21c,d ).
Physically, the thinning of the lubrication layer B under the bump still enhances the
shear stress at the interface, certainly providing an enhanced mixing inside the plug, as
in the case of two Newtonian fluids. Note though that the shapes of the fluid profiles
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Figure 21. (a) Horizontal velocity profiles far from (dashed) and under the bump. (b) Shear
stress at the interface between the two fluids along the channel. (c) Horizontal velocity uh

at the interface y = h(x) along the channel. (d ) Horizontal velocity u0 in the middle of the
channel at y = 0 along the channel. All quantities are dimensionless.

(figure 21a) do change due to the shear-thinning rheology of fluid A. Quantitatively,
the interfacial shear stress is increased by only 1.4 times under the bump as compared
with far from the bump in our calculations here.

We now compare the situations where we have a solution of 10 mg ml−1 BSA
and a solution of 10 mg ml−1 Hb mixed in bumpy channels. As table 4 shows, the
viscosity ratios Λ are similar (0.20 versus 0.22) and the concentrations are identical
(we can assume a similar crowding agent effect on the mixing then). Experimentally,
mixing occurs after 3 half-cycles for Hb and 7 half-cycles for BSA. Our model shows
that the dimensionless striation thickness is 0.0017 for Hb and 0.0036 for BSA after
3 bumps in the bumpy serpentine mixer: the dimensionless striation thickness is
much thinner for Hb than for BSA after 3 bumps in the bumpy mixer. The model
confirms then the qualitative trend of the experiment. In the meantime, the model
would predict better mixing for a ‘shear-thickening’ fluid: it shows the dimensionless
striation thickness to be 0.00107 after 3 bumps in the bumpy serpentine mixer
for a shear-thickening fluid with n= 1.5 and Λ = 0.20, all other parameters being
equal.

B.2. Slip difference

We turn now to the slip difference between bumps and no bumps in the case of a
non-Newtonian fluid (figure 22). We observe that, for sufficiently long times, after
the plug has gone past the bump, there is a persistent non-zero slip difference. This
plateau is negative for a shear-thickening fluid (n> 1), positive for a shear-thinning
fluid (n< 1), equal to zero for a Newtonian fluid (see figure 11a).
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Figure 22. Slip difference �xs(t) = xsb
(t) − xsnb

(t) for (a) a shear-thinning fluid where n= 0.1,
(b) for a shear-thickening fluid where n= 1.5. All quantities are dimensionless.

The amplitude of the persistent slip difference can be determined analytically. From
previous work, we can write:

dx0

dt
= u0(x0), (B 6)

dxh

dt
= uh(xh), (B 7)

where

u0(x0) =

(
−dp

dx

)1/n

/((1/n + 1)Λ)[h1/n+1(x0)] +
1

2

dp

dx

[
h2(x0) − d2

w(x0)
]
, (B 8)

uh(xh) =
1

2

dp

dx

[
h2(xh) − d2

w(xh)
]
. (B 9)

Note that u0(x0) ∼ u0(∞) and uh(xh) ∼ uh(∞) as x0 � 1, xh � 1. Therefore, from (B.6)
through (B.9), we obtain, for x0 � 1, xh � 1: for large t ,

x0(t) = 1 + u0(∞)t −
∫ 1

0

u0(∞)

u0(x)
dx, (B 10)

xh(t) = 1 + uh(∞)t −
∫ 1

0

uh(∞)

uh(x)
dx. (B 11)

Therefore, we derive

xsnb
(t) = (u0(∞) − uh(∞))t, (B 12)

xsb (t) = (u0(∞) − uh(∞))t +

∫ 1

0

(
uh(∞)

uh(x)
− u0(∞)

u0(x)

)
dx, (B 13)

and eventually

�xs(t) =

∫ 1

0

(
uh(∞)

uh(x)
− u0(∞)

u0(x)

)
dx. (B 14)

By defining

D(x) =
uh(∞)

uh(x)
− u0(∞)

u0(x)
, (B 15)

we then find that �xs(t) depends on the sign of D(x). In other words, the persistent
slip difference can be maximized in maximizing the value of∫ 1

0

D(x) dx.
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For a non-Newtonian fluid, we found that, for large t ,

�xs = xsb − xsnb
=

∫ 1

0

G(x)

u0(x)uh(x)
dx, (B 16)

where G(x) = uh(∞)u0(x) − uh(x)u0(∞). Literally,

G(x) =
1

2Λ(1/n + 1)

[(
−dp

dx

)1/n (
−dp

dx

)
∞

h1/n+1
{
d2

w∞ − h2
∞
}

−
(

−dp

dx

)1/n+1

∞
h1/n+1

∞

(
−dp

dx

) {
d2

w(x) − h2(x)
}]

. (B 17)

Now consider the particular case where n= 1 corresponding to a Newtonian fluid:

G(x) =
1

4Λ

(
−dp

dx

)(
−dp

dx

)
∞

{
h2

∞d2
w − h2d2

w∞

}
. (B 18)

Recall that for a Newtonian fluid, we find the following analytical solution for the
interface h(x) = h2

∞d2
w/d2

w∞ , which directly leads to G(x) = 0 and so �xs = 0. When
now n �= 1, we look at the variations of (B.17). We assume as in the numerical inputs
used so far that (−dp/dx)∞ = 1, which leads to

G(x) =
1

2Λ(1/n + 1)

[(
−dp

dx

)1/n

h1/n+1
{
d2

w∞ − h2
∞
}

−
(

−dp

dx

)
h1/n+1

∞
{
d2

w − h2
}]

. (B 19)

G(x) > 0 if and only if f (x, n) > 0, where

f (x, n) =

(
−dp

dx

)1/n

(h/h∞)1/n −
(
d2

w − h2
)(

d2
w∞ − h2

∞
) (

−dp

dx

)
h∞

h
.

We look at the variations of f with respect to n:

∂f

∂n
= − 1

n2
ln [(−dp/dx)(h/h∞)] e(1/n) ln[(−dp/dx)((h/h∞))]. (B 20)

Note that (−dp/dx)(h/h∞) > 1 as τAB > τAB(∞) for any x. In this way, ∂f/∂n< 0. As
we showed f (x, 1) = 0, we necessarily have f (x, n) < 0 for n> 1 and f (x, n) > 0 for
n< 1. If we come back to (B.17), we see that the particle Ph accelerates less than
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the particle P0 under the bump for a shear-thinning fluid whereas the particle Ph

accelerates more than the particle P0 under the bump for a shear-thickening fluid (see
figure 23). For a Newtonian fluid, the particle Ph accelerates as much as the particle
P0 under the bump.
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